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Abstract-Bower and Ortiz's finite perturbation method is used to analyze the gradual growth of
penny-shaped and half-planar cral:ks between barriers whose fracture toughness is greater than that
of the fral:ture lone. The breakthrough of a crack front into barriers when the stress intensity factor
at some points along the interfal:es exceeds the fracture toughness of the barriers is considered and
the associated changes in the distribution of stress intensity fal:tor and the pressure on the cral:k
fal:es is cakulated. The results indicate that under constant pressure on crack faces. a bounded
crack expands indefinitely while a semi-infinite cral:k would grow stably.

INTRODUCTION

The solution of crack growth problems is of practical interest in many fields. For the
analysis of the damage mechanism of various structural components, the growth of cracks
under varying loads is orten a process which has to be taken into account. Hydraulically
induced fracturing has been used for years by the oil industry for the secondary recovery
of petroleum. This technilJue is now also applied to some other fields such as geothermal
energy extraction and radioactive waste disposal. For successful application to hydraulic
fracturing, knowledge ahout the growth paltern of cracks and the associated variation in
hydraulic pressure on the crack l~lces is relJuired.

When the geometry ofcracks and load conditions are given. a variety orwell established
analytical and numerical methods arc available in the literature and can be employed to
solve for the stress intensity factor along the crack front. For crack growth problems.
however. neither the shape of the crack nor the distribution of stress intensity factor are
known a priori and C"Ln only be determined through the solution procedure.

Murakami and Nemart-Nasser (1983) studied the growth of two adjacent surface
cracks. By calculating the stress intensity factor for several assumed crack contours. they
discussed the stability of crack growth. The lluctuation in the maximum stress intensity
factor in their results indicates that the actual crack front curve in the growth process is
somewhere between the assumed contours. Mastrojannis el al. (1980) and Lee and Keer
(1986) investigated the crack growth induced by hydraulic fracturing. The crack front
advance was determined by adopting an ad hoc fatigue crack growth law. The normal
velocity of propagation of a point on the crack contour was assumed to be proportional to
the difference between the stress intensity factor and the local fracture toughness of the
material to a certain power. The solution procedure was essentially an iterative process,
searching for the actual crack geometry. While the fracture criterion may be satisfied for
the final geometry of the crack. at any intermediate status during the iteration it is not, and
hence the searching process does not represent the actual process of crack growth.

In recent years Rice (1985,1987) and Gao and Rice (1986. 1987a,b) have developed
a theory for calculating the first order variation in crack opening displacement and stress
intensity factor due to small changes in crack geometry. Configurational stabilities of
straight half-plane cracks and circular cracks are assessed based on this first order per­
turbation theory. Gao and Rice (1989) have also analyzed crack trapping by arrays of
tough obstacles in a brittle matrix. By comparing numerical results with those obtained by
Fares (1989) using the boundary element method, the range of validity of this first order
analysis can be judged.

Bower and Ortiz (1990) extended Rice's first order perturbation scheme to arbitrarily
large variations of crack geometries. By repeated small perturbations to some initial
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g~om~try·. results for cracks of arbitrary shapes can be d~rived. At each step of the p~r­

turbation proc~dure th~ stress intensity factor is calculated by using the first order fonnula.
At the same time. th~ influence function is also updated successively for each perturb~d

crack contour. Comparison with known analytical solutions shows that the accuracy of
results is maintained after some hundreds of steps of perturbations.

Since the method reduces the analysis to evaluating one-dimensional integral equations
d~fined on the crack front. it has certain computational advantages over some other existing
numerical techniques. which involve discretization of two-dimensional areas on crack faces.
Due to the nature of the small perturbation scheme. this procedure is especially suitable for
solving crack growth problems.

In this paper the finite perturbation scheme of Bower and Ortiz is extended to study
the gradual growth of planar cracks between barriers with larger fracture toughness. induced
by th~ variation of pressure on the crack faces. At each step the fracture criterion that the
stress intensity factor is less than or equal to the local fracture toughness is satisfied along
the crack front. When the stress intensity factor at some points along the interfaces exceeds
the fracture toughness of the barriers. breakthrough will occur and these points witt then
be allowed to advance into barriers. Two kinds of initial crack geometry are considered.
the penny-shaped circular crack and the semi-infinite crack with straight front. The crack
growth is accompanied by variation of the pressure applied on the crack faces. which may
increase or decrease depending upon the crack geometry considered.

FORMULATION

[n this section a hrief outline of the tinite perturbation method will be given. A more
detailed derivation of the equations presented here and elaboration of the method arc given
in the papers of Rice (19H5. [987) and Rower and Ortiz (1990).

Consider a planar crack suhjected to loads which induce a distrihution of mode I stress
intensity factor around the crack front C. Suppose that under the load condition the crack
front hegins to grow. Each point at the crack front advances a distance c)a(.I') along the
direction normal to C. into a new position on the perturbed cral:k front C. Based on the
theory of weight functions and the consideration of energy variation. Rice (1985. 1987)
derived the following two equations. which enable one to calculate the first order variations
()K(t) and M)(s. t) in stress intensity factor and influence function respectively. resulting
from the perturbation of the crack geometry:

JK(t) = .,.~ rK(s)D(s. t)()a(s) ds
_T! Jc

JD(s.O = d- r D(s.i.)D()..t)e5a().)di..ar.l·

( I)

(2)

Equations (I) and (2) are the basic equations of this perturbation method. Equation
(I) is used to calculate the stress intensity factor along the crack front when the crack
advance c5a(s) is prescribed. Alternatively. the crack advance can be determin~d if the
ch.mge in K(s) is known. [n the latter case eqn (I) is viewed as an integral equation for the
unknown function c5a(s). [n either case. once the new crack front C is determined. eqn (2)
is used to update the intluence function D(s. t) for C. This procedure can be repeated for
further perturbations of the crack front.

One difficulty associated with the application ofeqns ([) and (2) is the strong singularity
possessed by the influence function D (5. I). In general. the integral in eqn (I) contains a
singularity of order (/-5) - 2 and is only defined in the principal value sense. if the crack
front advance e5a(s) satisfies certain conditions. However. as shown by Rice (1985. 1987).
for cracks under uniform load in a homogeneous. isotropic medium this difficulty can be
overcome by applying a translation <5x = e5a{t)n(/) for eqn (I) and a combination of a self­
similar expansion. a translation and a rotation for eqn (2) to C to obtain a reference



Growth of pressurized planar cracks between barriers 29

configuration Cree. The displacement J~r(s) from C er to the new crack front Cthen satisfies
the required conditions. After this regularization, the following equations are derived:

K(l) = K(f) + -;-1 K(s)D(s, f){ Ja(s) - [o(s)' n(f)]Ja(f)} ds
_n c

<1I(s, i) _ <1I(s, f) _1_1<1I(s,;") <11()., f) J rer • d'
5(l-s) - q~S(f-S) + 2nq 3 c S().-s) S{i.-f) a ( .... ) ....

(3)

(4)

where <1I(S.f)/S(S-f) = D(s. f). <1l(s. t) is a bounded function. S(S-f) = (c/n)~ sin~[n(f-s)/c]

for bounded cracks and 5(s. f) = (f - s) ~ for half-plane cracks.
For the crack growth problem analyzed in this paper. the fracture criterion

K(s) ~ K,.(s) is used. where K,. is the fracture toughness of the material. The faces of the
crack are loaded with a uniform normal pressure P, which induces a stress intensity factor
K(s) = PK(s). With the pressure build-up. the stress intensity factor will increase gradually
and eventu,dly will reach the local fracture toughness over some portion of the crack front:
PK(s) = K... At this stage any arbitrarily small increase in pressure will force the crack front
to advance. The crack front advances to a new position. where the fracture criterion along
the crack front is satisfied:

K(s) +<'5K(s) ~ K,.. (5)

From eqn (3). over the portion of the crack front where the equality sign in eqn (5)
holds. the following equation can be derived (Bower and Ortiz) :

-i5P '. Ii.... .
P

h (I) = 1 A: (s) D (s. f){ c>a(s) - [n(s) •n(r) )&l( t) } ds.
_1t ('

(6)

When the new crack front is determined by solving oafs). cgn (4) is used to updatc (lJ(s, f).

For the new crack front. the analysis described above C'IO then be repeated.
Since the basic equations for the calculation of the variation of K(s) and D(s,/) are

a<.,'curate only to the tirst order in oa(s), as noted before, cach step of the perturbation of
the crack front must be kept small enough to ensure the accuracy of the numerical results,
and thus a large number of perturbations are required when solving problems involving
large deformations of crack geometry. However, for many crack growth problems of
interest, this feature of small perturbations is desirable because it allows one to monitor
more closely the process ofcrack growth and the resulting changes in other variables. Since
the fracture criterion is satisfied for each perturbation step along the crack front, the
perturbation process in this analysis should represent the actual process of crack growth.
Moreover. the present analysis removes the necessity to assume some relation between the
normal velocity of crack propagation, the stress intensity factor and the crack toughness
of the material. The crack front advance is determined naturally in the solution procedure
only by the requirement that the fracture criterion be satisfied.

NUMERICAL SCHEME

The solution procedure begins from some appropriate reference crack geometry, whose
distribution of stress intensity factor and influence function are known. Two kinds of initial
crack geometries are considered here: the internal circular crack and the half-plane crack.

For these two kinds of cracks subjected to uniform pressure on crack faces,the stress
intensity factor is constant along the crack front and is denoted by KIl • When the stress
intensity factor exceeds the fracture toughness at some points along the crack front. these
points will be allowed to advance. The advance c5a(s) is determined by solving eqn (6) under
the restriction that c5a(s) =0 over the portion of the crack front where the stress intensity
factor is less than the local fracture toughness.
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For general crack geometries. the integral equation (6) can only be solved by numerical
methods. Following Bower and Ortiz. the crack front is divided into n elements with three
nodes for each element. The crack front curve over each element is approximated by a
parabola through three nodal points. The functions <I> and K are expressed by their nodal
values through piecewise quadratic Lagrange interpolation. To ensure that Ja' (.1') is Holder
continuous. the unknown function Ja(s) is approximated by Hermitian interpolation based
on the nodal values of J(/(s) and Ja' (.1') • .I' = S:k. k = O. 1.2..... II.

By the above discretization procedure. eqn (6) is reduced to a set of linear algebraic
equations in Ja(s:,) and Ja'(s:,):

where the collocation points IJ are set between nodal points• .1'/ < IJ < .1'/+ I' The integration
weights w,(I,). li',(I) and l';(/;) can be calculated explicitly (Bower and Ortiz. 1990). A
problem encountered in our calculation of 11',(/,) and 1i',(1/) is that when 1/,- .1'1 is not small
the integration

I'·k.' ~k+: L (o)H(o .I' )_ -~. "".( _ , ;" .J,S:'k· :'k+-:'',k- L [,(.I,.I,)I>(S,.I,)K(s;)] . ~ ds
':< ,~~k (//-.1')

(8)

may be inaccurate due to the subtraction of large positive and negative numbers. This
dillieulty may be overcome by changing the integral to

(9)

where ).• is chosen such that I).• + /, -sl < (5. s~. < .\' < S~•• :. and where (5 is a small constant
being smaller than one.

After solving eqn (10) for c5a(s,) and c5a'(s,). eqn (4) is used to update (1)(.1',./) by
numerical integration. Equation (4) is derived in a form suitable for numerical evaluation
of the principal value integration by Bower and Ortiz (1990). In the numerical evaluation
of the integral. the functions (1'(.1',. A.)(I'(A.. 1/) and G {c5arcf (A.)} are approximated by Lagrange
interpolation over each element. For the clement containing the collocation point I,. s = I,

is purposely chosen as a nodal point for the Lagrange interpolation in order to ensure that
as the integration point approaches IJ , the numerator of the integrand will tend to zero.

RESULTS AND DISCUSSION

The perturbation scheme described in the preceding sections is used to analyze two
cases: the hydraulically induced penny-shaped crack expansion between barriers and the
growth of semi-infinite cracks between barriers. Both problems are of interest in reservoir
engineering to aid in the understanding of issues such as the stability of a barrier to
breakthrough of a crack. when a layer contained within the barriers is being fractured
hydraulically. The actual problems encountered often involve the growth of cracks in
layered structures. Due to the constraints imposed by the technique involved the layering
is approximated by discontinuities in the fracture toughness.

Hydraulically induced penny-shaped crack expansioll hetween barriers
The initial crack configuration is assumed to be a circle of unit radius in an infinite

elastic solid (Fig. I). The middle (pay) zone and the barrier zone are considered to have the
same clastic modulus but ditfering fracture toughnesses. With steadily increasing pressure on
the crack faces, the stress intensity factor along the crack front will increase gradually and
eventually reach the critical value. Kc • the fracture toughness of the material in the pay
zone. If the pressure is further increased by a small amount. the crack front begins to
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Fig. I. The geometry of the circular crack betwl.-en barriers.

advance until the new crack configuration satisfies the fracture criterion K(s) ~ K.. along
the crack front.

For numerical solution the crack contour is divided into 64 clements. In each step,
according to the requirement of small perturbation. ~p in eqn (15) is chosen such that the
maximum cnlck front displacement. Jtlrnax(s) ~ 0.01. Since the fracture toughness in the
barriers is considered to be larger than that in the pay zone, the crack expansion is restricted
there. The crack expansion is terminated at the interfaces at the first stage of crack growth,
when the stress intensity factor along the interfaces does not exceed the fnlcture toughness
of the material in the barrier zone.

Numerical results are shown for this stage ofcrack growth in Fig. 2a and b. Although
the stress intensity factor along the crack front in the middle zone is uniform, K(s) = K,.•
points on the crack front in the central part of the middle zone tend to advance faster than
those points near the interfaces (Fig. 2a), a phenomenon not predictable by the fatigue
crack growth law. This result is apparently caused by the presence of the barriers on the
upper and lower sides. which hinder the crack front expansion along the vertical direction.

The crack expansion results in a drop in pressure on the crack faces. as shown in Fig.
3. The decline of P is rather sharp at the initial phase. As the crack continues to grow.
however, the rate of pressure drop will decrease.

The stress intensity factor at the interfaces increases substantially during the crack
growth (Fig. 2b). When it exceeds the fracture toughness of the barrier lones, the crack
front will begin to advance into the barriers. Numerical results for this stage ofcrack growth
are shown in Figs 4-6, where Kc and Ks are the fracture toughnesses of the pay zone and
the barrier zone, respectively.

In Fig. 4a (KBtKc = 1.257), it is observed that the growth rate of crack front in the
barrier zone is smaller than that in the pay zone. However, the growth rate in the barrier
zone is steadily increasing as more and more points along the interfaces, where the stress
intensity factor reaches Ks (Fig. 4b), begin to advance.

In the first stage of crack expansion, which is restricted to the pay zone, the rate of
pressure drop tends to slow down with crack growth. The breakthrough of the crack front
into the barriers. however, will cause a sharp drop in the pressure as can be seen from the
curve (KBt Kc = 1.257) in Fig. 3.
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Fig. 2a. The growth of a penny-shaped crack between barriers without breakthrough.
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Fig. 2b. The variation of stress intensity factor of a penny-shaped crack during growth without
breakthrough.
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Fig. 401. The growth of a penny-shaped erack after hreakthrough. Ka!K,. = 1.257.
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Fig. 6. Comparison of growth rates of penny-shaped cracks along horizontal and vertical directions
after breakthrough.

When the ratio Kn/ K.. is larger, the breakthrough ofcrack front into barriers will occur
at a later stage of crack growth (Figs Sa and 6). In the initial phase of breakthrough the
growth rate of the crack front in the barrier zone is sm;'lll as is the deviation of pressure
drop rate from the curve without breakthrough (Fig. 3). This result occurs since at first
only a small part of the whole crack front is involved in the breakthrough process. However,
as the crack continues to grow and more and more points along the interface begin to
advance. both the crack growth rate in the barrier zone and the pressure drop rate will
increase rapidly, as shown in Figs 3 and 6.

The decrease of pressure with the expansion of initially circular cracks may infer that
this growth process is unstable. If the pressure remains constant, the advance of the crack
front will cause the stress intensity f~lctor to increase and hence the crack will continue to
grow in an unbounded manner.

Growth ofsemi-infinite cracks between barriers
The pay zone is located between - 1.0 < }' < 1.0. Only part of the infinite crack front,

- Yo ~ Y ~ Yo, is divided into elements and the following assumptions are taken over the
remainder of the crack front:

<J>(s, t/) = (1)(50.tj ). K(s) = K(so), c>a(5) = <5a(so), for s < 50'

$(5, tJ ) =$(52",11), K(5) = K(S2II), c5a(5) =<>a(s2ll)' for 5 < 52'"

where )'0 = 4.0 is chosen for the calculation. After the breakthrough of the crack front
into barriers.)'o is set to be 6.0. Numerical results show the behavior assumed in the above
equations when points approach So and S2ll' In each step of the perturbation e5am~.(s) is
restricted to be less than 0.0 I. The two sharp corners on the crack contour at x =0.0,
y = ± 1.0 are smoothed by fitting a parabola through the neighboring nodal points. which
is believed not to affect the overall behavior of crack growth.

The growth of the crack front, which is restricted to the pay zone, is shown in Fig. 741.
In the growth process the initially straight crack front between barriers gradually deforms
to curves with increasing curvatures. As in the case of circular cracks, points in the central
part of the pay zone tend to advance faster than those near the interfaces. The stress
intensity factors along the interfaces and in the barriers increase during the crack growth
(Fig. 7b) and reach their peak value at the two corners on the crack contour. The variation
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Fig. 7a. The growth of a half-plane crack bclw~..cn barriers withoUI breakthrough.
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Fig. 10. Comparison of growth rates of half-plane cracks in different zones after breakthrough.

of pressure on the crack faces is shown in Fig. 8. fn contrast to the c<lse of bounded cracks,
the pressure increases with crack <ldvance and indicates stable crack growth. When the
pressure does not increase. the crack will cease to grow.

The breakthrough of the cr<lck front into barriers first occurs at the two corners. wherc
the m<lximum stress intensity factor reaches the fracture toughness of the barriers. The
growth of the crack front after breakthrough is shown in Fig. 9. The comparison of crack
growth ratcs in dilferent zones is made by comparing the adv<lnce of the center point in the
pay zone and that of the corner points (x = 0.0. y = ± 1.0) (Fig. 10). Figures 9 and 10 show
that at first the rate of breakthrough is small. When <In increasing number of points <Ire
involved along the cr<lck front in the barrier <lnd along the interf<lces, the growth r<lte of
the crack front in the barriers will accelerate, causing further breakthrough. The effect of
the breakthrough on the variation of pressure on the crack faces is shown in Fig. 8. Only
after a (<lrge section of the crack front begins to advance into the barriers arc appreciable
changes in the pressure variation observed.

As shown in the two c<lses presented here of penny-shaped and half-plane crack growth
between barriers, the finite perturbation method is especially suitable for solving crack
growth problems, due to its small perturbation feature. One limitation of the application
of this procedure at present is that the clastic moduli for the different zones are required to
be the same. and the pressure on the crack surfaces must be uniform, which are essential
for the regularization of the strongly singular integral in the basic equations. Whether this
perturbation method can be extended to solve truly layered medium problems is not clear
at present.
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